



Dependence of the stress for initiation of stage III, $\tau_{\rm III}$, on pressure; circles refer to $\dot{\epsilon} = 5 \times 10^{-4} \, {\rm sec^{-1}}$ and triangles to $\dot{\epsilon} = 1 \cdot 2 \times 10^{-2} \, {\rm sec^{-1}}$. The straight lines between 1 atm and 4 kb are fitted by least squares; the slopes are given in the text.

Fig. 3

Dependence of the range of stage Π , $(\dot{\epsilon}_{\Pi\Pi} - \epsilon_{\Pi\Pi})$, on pressure, where symbols are as for fig. 2. The sloping lines are fitted by least squares; above 6 kb a simple means of all the data points is plotted.

In figs. 2 and 3 it also is apparent that the effect on P of the initiation of stage III saturates in the vicinity of 5 kb for both strain rates. According to our qualitative association of decreasing τ_{III} with increasing γ , noted in the introduction, it would follow that either the increase of γ saturates or the stacking-fault width becomes so narrow it is no longer sensitive to increasing γ . In fig. 2, which is of most interest, the horizontal lines represent the mean values (from 5 to 10 kb) of τ_{III} at each strain rate. It is also readily apparent from fig. 2 that the strain rate sensitivity of τ_{III} decreases greatly with increase in pressure. Extracting points from the solid lines shown one finds that $(\partial \ln \tau_{III}/\partial \ln \dot{\epsilon}) = 0.22$ at 1 atm (in good agreement with the 1 atm data of Hesse) then decreases to 0.099 at 4 kb and finally becomes roughly constant at 0.01 between 5 and 10kb. The last value is probably only reliable within a factor of 2 or 3. A far greater number of samples would have to be tested to fix it more accurately. It is clear, however, that a strong decrease of $(\partial \ln \tau_{\rm III}/\partial \ln \dot{\epsilon})$ with pressure is well established.

Dependence of the range of stage I, $\epsilon_{\rm II}$, on pressure; circles are for $\dot{\epsilon} = 5 \times 10^{-4}$ sec⁻¹ and triangles for $\dot{\epsilon} = 1 \cdot 2 \times 10^{-2}$ sec⁻¹.

On comparison of the present τ - ϵ curves with those reported by Aladag et al. reasonable agreement is found. The stronger dependence of τ_{III} and $(\epsilon_{\text{III}} - \epsilon_{\text{II}})$ on P noted here is, in considerable measure, due to the 1%